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ABSTRACT
Algorithmic modifications to the MELTS software package are presented in order that

calculations of heterogeneous phase equilibria can be performed in the subsolidus. Methods
are presented for: (1) selecting an ‘‘initial guess assemblage’’ that satisfies the bulk com-
position constraints; (2) detecting saturation of new phases (including liquid) in an assem-
blage; (3) adding and removing phases from the assemblage without adjusting the system
bulk composition; and (4) constraining the assemblage to a fixed f . These methods haveO2
been added to MELTS, allowing it to calculate heterogeneous phase equilibria with or
without liquid, closed or open to O, and with fixed intensive variables (P,T), (P,S), (P,H),
or (V,T). Applications include fractional melting calculations, metamorphic phase equilib-
ria, and geophysical models of subsolidus regions of the Earth.

INTRODUCTION
MELTS (Ghiorso 1994; Ghiorso and Sack 1995) is

a software package developed for modeling liquid-sol-
id phase relations in magmatic systems. The funda-
mental geochemical problem solved by MELTS is the
calculation of an equilibrium assemblage of phases by
minimization of an appropriate energy potential, sub-
ject to constraints on bulk composition; either pressure
or volume; either temperature, enthalpy or entropy; and
optionally f . From an algorithmic perspective, theO2
liquid phase serves several special functions in MELTS
that necessitate its inclusion in the stable phase assem-
blage. These functions need to be replaced with a more
general implementation for the minimization algorithm
to function in the subsolidus. In MELTS, the liquid has
the special property of unlimited freedom of compo-
sitional variation within its component space. Hence,
an ex nihilo ‘‘initial guess assemblage’’ that satisfies
the bulk composition constraints is always available by
attributing the entire assemblage to liquid. Likewise,
the compositional freedom of the liquid phase makes
it an ideal ‘‘reservoir phase’’ for adding or removing
small amounts of a solid phase of arbitrary composition
to the metastable assemblage without adjusting the sys-
tem bulk composition. Furthermore, in MELTS, the
number of liquid components is equal to the number of
system components, so the chemical potential of any
system component can be obtained by a simple alge-
braic transformation. The chemical potentials of the
system components, in turn, are needed to detect sat-
uration of new solid phases and determine whether to
add them to the assemblage. Finally, in MELTS the
f is determined, and for open systems buffered, usingO2
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a parameterization of the Fe2O3/FeO ratio in the liquid
phase. Below we discuss algorithmic modifications that
replace all these special functions of the liquid. This
extension is useful for, among other applications, the
capacity to model fractional melting without restarting
from an ‘‘all liquid’’ initial guess after each extraction
of melt or leaving a small amount of melt behind. The
latest version of MELTS, incorporating subsolidus ca-
pability, is available as a Java Applet on the world wide
web at http://melts.geology.washington.edu.

ALGORITHMS
Initial guess
Finding an initial guess that satisfies the problem

constraints is often the most difficult part of a multi-
dimensional, constrained minimization procedure. The
constraints in this case are that (1) the total amount of
each oxide (i.e., system component) in the system must
equal the quantity of that oxide in the prescribed bulk
composition, and (2) all phases in the system have
compositions within a defined stoichiometric range. In
the magmatic case (i.e., liquid present), unless a pre-
vious solution is available, one can always take as an
initial guess the assumption that the entire system con-
sists of liquid (Ghiorso 1994). Bulk compositions are
then limited to those within the space of liquid com-
positions spanned by the particular component choice.
Stoichiometric constraints on solids are typically more
restricting, and only in special cases is it feasible to
assign the bulk composition to a single solid phase.
Hence, a method is needed in the liquid-absent case for
deriving initial guess solid assemblages where all sol-
ids are of appropriate stoichiometry and sum to the
prescribed bulk composition. We suggest two ‘‘initial
guess’’ methods: (1) starting with a norm calculation
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and (2) starting with a metastable liquid. The former is
more efficient, the latter is more general.
The problem of assigning a bulk composition in ox-

ide weight percent to a set of mineral components is a
familiar one to petrologists. The CIPW norm calcula-
tion (Cross et al. 1902) is the best known, but a similar
procedure can be defined for any set of phases and
phase components (Currie 1991). In an appendix, we
give a set of rules that can be used to partition any
peridotitic and many basaltic compositions into two py-
roxenes, olivine or quartz, and between one and three
of feldspar, garnet, and spinel. The end-member min-
eral components involved are those used by MELTS
for these phases. The initial guess produced by a norm
calculation of this kind can be tailored to include (if
known) phases that are stable at equilibrium, which
saves considerable computation time. In general, how-
ever, this norm calculation procedure simply produces
an entry point to a minimization algorithm that must
be further equipped with the means to add and drop
additional phases as needed.
When the bulk composition is outside the range ex-

pressible by positive amounts of normative constituents,
it is best to use a completely molten system as the initial
guess. If the equilibrium assemblage is unknown, this
may in fact be a more efficient approach than a ‘‘norm
initial guess’’ containing phases that will subsequently
have to be dropped. It is also likely to be more efficient
than any mathematical procedure for assigning initial
guesses that lacks petrological insight. Constrained min-
imization proceeds according to the method used in
MELTS (Ghiorso and Sack 1995), adding saturated
phases one at a time, until the liquid is exhausted. At this
point, assuming a method is available to partition the
mass contained in the last trivial batch of liquid into the
available solids (see below), one arrives at an assemblage
of solid phases that meets the bulk composition and phase
stoichiometry constraints. This is a valid initial guess for
further minimization in the subsolidus. It often produces,
at the point of liquid exhaustion, an assemblage quite
close to the equilibrium assemblage. Note that this pro-
cedure can be applied with some confidence at quite low
temperatures, as long as the liquid thermodynamic solu-
tion model can be extrapolated into the glass state, well
below the calibrated range of temperature.
It is possible to define general algorithmic procedures

for assigning bulk compositions to solid phases, but with-
out the application of petrologic constraints, such a meth-
od will not produce an initial guess as useful as either of
the above methods.

Detecting phase saturation
Ghiorso (1994) describes a method for detecting the

saturation of single or multicomponent ideal or non-
ideal solids with respect to a liquid phase. This method
uses the chemical potentials of the liquid components
as a reference for the solids to be tested. It is straight-
forward to extend the method to any solid assemblage

on the condition that this assemblage is in (at least
metastable) heterogeneous equilibrium. Hence we re-
quire the potential minimization step of the equilibri-
um-seeking procedure to reach convergence with the
initial solid assemblage before we test for the satura-
tion of additional phases. In practice this is not a sig-
nificant difficulty.
Our modified algorithm requires the chemical poten-

tial of each of nc system components in the solid as-
semblage. Let the solid assemblage contain m phase
components (when two or more phases of the same
mineral coexist, its components need only be counted
once in this procedure). The stipulation that the assem-
blage be in heterogeneous equilibrium translates into a
requirement that the chemical potentials of the system
components are equal in all the phases. These chemical
potentials are obtained from the solution of an over-
constrained but consistent least-squares problem (if
each system component is present in exactly one solid,
then the matrix of the least squares problem is square).
Let the vector msol of length m contain the chemical
potentials of the m solid phase components present in
the assemblage. We construct the m by nc matrix Tsys
whose rows contain the stoichiometric coefficients that
transform the phase components into the system com-
ponents. The vector of chemical potentials of system
components msys is obtained by solving

Tsysmsys 5 msol. (1)

Although this system is generally over-constrained, it has
a unique exact solution if the conditions of heterogeneous
equilibrium are exactly satisfied. The solution to Equation
1 is best obtained from the singular value decomposition
(SVD) of Tsys (Lawson and Hanson 1974; Press et al.
1992).
To clarify the definitions above, consider a simple ex-

ample in the system MgO-FeO-SiO2 (m 5 3). Let us al-
low the phases olivine, pyroxene, and quartz to be present
in the equilibrium phase assemblage with the nc 5 5
phase components Mg2SiO4, Fe2SiO4, MgSiO3, FeSiO3,
and SiO2. Then Equation 1 for this example reduces to

Olivine   2 0 1 mMg SiO2 4

Olivine 0 2 1 m mMgO Fe SiO2 4    
Pyroxene1 0 1 m 5 m . (2)     FeO MgSiO3  Pyroxene0 1 1 m mSiO FeSiO 2 3   Quartz0 0 1 mSiO   2

If msys is further transformed into the chemical potentials
of nc liquid components (mliq), a fictive liquid is then suf-
ficiently characterized to use the saturation algorithm of
Ghiorso (1994) without further modification. Indeed, this
method may be used as presented to detect the saturation
of non-ideal liquids with respect to subsolidus
assemblages.
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Adding and removing phases
In the implementation of MELTS described by Ghiorso

and Sack (1995), when a newly saturated phase is rec-
ognized or some solid phase undergoes exsolution, a tiny
mass of the new phase is added by subtracting from the
liquid the needed mass of each liquid component in order
to make up the desired solid composition. Similarly, dur-
ing the course of potential minimization, when the mass
of a solid drops to a (smaller) ‘‘tiny’’ level, it is removed
by adding the appropriate amount of each component to
the liquid to conserve bulk composition. The composi-
tional flexibility of the liquid phase makes this procedure
trivial in both cases. When liquid is absent, however,
more care is required. Two methods present themselves.
In the first, negligible changes in the bulk composition
are allowed. If the mass of phases added or dropped is
sufficiently small, the change in bulk composition implied
by simply adding or removing the components contained
in the solid from the system bulk composition may be
negligible. When performing calculations near a phase
boundary, however, the unpredictability and path depen-
dence of this procedure are unacceptable. Consequently,
we prefer to use a second method, described below,
which exactly satisfies the original bulk composition
constraints.
This procedure is essentially a general method for as-

signing a bulk composition to phase components, but as
the masses involved represent small perturbations to an
assemblage already near (metastable) equilibrium, the ar-
bitrary nature of the assignment is not a disadvantage.
Let j denote the phase to be added or dropped. The com-
position of the phase is represented by the signed number
of moles of its phase components (positive if the phase
is being added, negative if it is being dropped) arranged
as a vector dmj of length naj. We begin by transforming
dmj into the nc system components: dmsys 5 Tjdmj, where
the nc 3 naj stoichiometry matrix Tj is a submatrix of
Tsys, defined above. Let us say that the remaining assem-
blage after phase j is dropped or the pre-existing assem-
blage to which phase j is to be added contains nsol phase
components (here we count coexisting phases of the same
mineral as independent phase components in order to
minimize the perturbation). We seek a vector dmsol of
perturbations to the number of moles of each phase in
the assemblage. If Tsol is the nc 3 nsol stoichiometry ma-
trix that transforms the system components of the assem-
blage to the set of phase components we seek to modify
(Tsol 5 T ), then the solution is expressed by the systemT

sys

of linear equations Tsoldmsol 5 dmsys that is, in general,
underconstrained, i.e., there is an (nsol 2 nc) dimensional
space of solutions all of which satisfy the constraints.
Solution of this system by SVD will produce the solution
vector dmsol that has the smallest 2-norm [i.e., the mem-
ber of the solution family with minimum (dm ·dmsol )Ω].T

sol

It is possible to take advantage of this property, and to
choose instead the solution that least perturbs the assem-
blage. The smallest relative perturbation to the assem-

blage is obtained by transferring as much mass as pos-
sible from the most abundant phase components in the
assemblage and as little mass as possible from the least
abundant phase components. The SVD can be forced to
choose this solution by weighting the rows of Tsol as fol-
lows: let msol be the vector of total abundances of the nsol
phase components in the assemblage to be perturbed, and
denote the nsol 3 nsol diagonal matrix with msol on the main
diagonal as Msol. Since the matrix is diagonal, its inverse
is simply the diagonal matrix with the reciprocal of each
element of msol along its diagonal. Then we have
[Tsol·Msol]·[M ·dmsol] 5 dmsys, which we solve using the21

sol

SVD of [Tsol·Msol]. This yields on backsubstitution the
particular solution [M ·dmsol] with the smallest 2-norm.21

sol

The least-squares constraint on the particular solution
thereby acts most strongly on the elements of this vector
that have been weighted to large values by dividing by
small elements of msol. The desired solution is then ob-
tained simply by premultiplying the particular solution by
Msol, which recovers the desired solution vector dmsol.
Even though this method is intended to make small

perturbations to the assemblage, it is possible for it to fail
by overstepping the stoichiometry limits on one or more
phases. Should this occur, the calculation can always be
resumed by returning to the initial guess methods docu-
mented above.

Measuring and buffering fo2
In order to perform calculations at constrained f , likeO2

other constraints, it must be correct in the initial guess to
each constrained minimization step, so an auxiliary al-
gorithm is needed to buffer f to the desired value beforeO2
minimization (and to calculate f in unconstrained cal-O2
culations). The algorithms of Ghiorso and Sack (1995)
accomplish this task using the parameterization of Kress
and Carmichael (1991) for estimating Fe2O3/FeO in sili-
cate liquids as a function of composition, temperature,
pressure, and f . In the absence of a liquid, a method isO2
required that enforces the f buffer on the whole assem-O2
blage rather than in the liquid phase. For particular min-
eral assemblages, this is straightforward; the challenge is
to find a general method that works for any Fe31- and
Fe21-bearing mineral assemblage. Let us first consider the
case of an assemblage of spinel, olivine, and pyroxene.
In this case we can write a balanced redox reaction:

O ol px(g) 1 6 Fe SiO 1 6 CaMgSi O2 2 4 2 6

5 2 Fe ,sp px pxO 1 6 CaFeSi O 1 3 Mg Si O3 4 2 6 2 2 6

which can be expressed as
6

n m 5 0, (3)O i i
i51

where i 5 1 refers to O, ni are stoichiometric coefficients
(negative for reactants, positive for products), and mi are
molar quantities of the reactant and product phase com-
ponents. The reaction is characterized by the equilibrium
constant
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sp px px2 6 3(a ) (a ) (a )Mt Hd En 0K 5 5 exp(2DG /RT ), (4)pxol 6 6(a ) (a ) fFa Di O2

where a is activity, R the gas constant, T the absolute
temperature, and DG0 the standard-state Gibbs free energy
of reaction. Hence at equilibrium,

sp px px2 6 3(a ) (a ) (a )Mt Hd En0RT ln f 5 DG 1 RT ln (5)O px2 ol 6 61 2(a ) (a )Fa Di

or more generally
6 6

0RT ln f 5 n g 1 RT n ln a , (6)O OO i i i i2
i51 i52

where g is the standard-state molar free energy of phase0
i

component i, ai is the activity of phase component i in
the appropriate phase, and the sum over activities ex-
cludes O (i 5 1). All the derivatives of f with respectO2
to intensive variables can be obtained from this expres-
sion. Buffering the system to a prescribed f simply re-O2
quires forcing the reaction toward or away from oxygen
until the activities of the components change so as to
yield the correct f .O2
Following this example as a model, it is clear that a

general technique is required for finding a balanced re-
dox reaction among the m phase components actually
present in the assemblage plus O2; once such a reaction
is found, the procedure for calculating f is identicalO2
to that for the spinel-pyroxene-olivine oxybarometer
above. We proceed as follows: construct a right-hand-
side vector dm of length nc 1 1 representing the net*sys
change in moles of O and system components effected
by the desired reaction, and set the values equal to the
stoichiometry of the simplest redox reaction possible
among the system components and O. For example, if
the system components are the oxides SiO2-TiO2-Al2O3-
Cr2O3-Fe2O3-FeO-MgO-CaO-Na2O, we use the reaction
4 FeO 1 O2 5 2 Fe2O3 resulting in dm T 5*sys
{21,0,0,0,0,2,24,0,0,0}. Note that the first position in
dm represents the stoichiometric coefficient for O2,*sys
and the rest of the vector indexes the system compo-
nents in their usual order. Next we construct the (nc 1
1) 3 (m 1 1) matrix T , which converts the system*sol
components plus O2 to all the solid phase components
present in the assemblage plus O2(g). Hence if O2(g)
is the first phase and O2 the first component,

 1 0 · · · 0
 0

T* 5 . (7) sol A Tsol 0 

then any solution vector n satisfying T ·n 5 dm* * * *sol sol sol sys

gives the coefficients of a balanced redox reaction
m 1 1

*n m 5 0 (8)O sol ii
i 5 1

that adds one mole of O2 to the system while converting
four moles of Fe21 into Fe31. This system is undercon-

strained (there is an m 2 nc dimensional solution
space), but we have some grounds on which to choose
among the feasible solutions. If, once again, we wish
to find the reaction that minimizes the perturbation to
the system required to introduce or remove a given
quantity of O then, proceeding as above, we construct
the diagonal weighting matrix M and assign a large*sol
value to the first element, representing O2(g). Then we
compute the SVD of [T ·M ], back-substitute to ob-* *sol sol

tain the weighted particular solution [M 21·n ], and* *sol sol

then recover the desired reaction stoichiometry n by*sol
premultiplying by M . On the other hand, it may be*sol
desirable for computational reasons to find the simplest
reaction among the feasible solutions, e.g., one involv-
ing the fewest phase components. This may be obtained
by constructing a matrix whose first column is the par-
ticular solution to the unweighted SVD problem and
whose other columns form an orthonormal basis for the
nullspace (e.g., those columns of V returned by the
SVD of T 5 U·diag[w]·VT that correspond to zeroes*sol
in w), and then performing a column reduction to insert
as many zeros as possible into the desired column.

DISCUSSION
With the four modifications detailed above, the MELTS

software package can be applied to a range of solid-state
equilibrium problems. Brown (1996), for example, used
MELTS with these subsolidus extensions to calculate
density, mineral assemblages, and seismic velocities for
tectonic and stable North American mantle lithosphere.
Application of this method to a full range of crustal meta-
morphic problems will depend, however, on progress in
thermodynamic models for a number of highly complex
minerals. Phases such as staurolite, amphibole, chlorite,
chloritoid, etc. have not yet been modeled adequately.
The algorithms developed herein, together with those

of Ghiorso (1994) and Ghiorso and Sack (1995), may in
principle be used to compute equilibrium assemblages at
fixed (T, P, f ) as well as (S, P, f ), (H, P, f ), or (T,O O O2 2 2

V, f ). This is not, however, the best way to calculateO2
f -buffered isentropic, isenthalpic, or isochoric equilib-O2
ria. It is unclear what these calculations represent if per-
formed directly. Buffering of f explicitly requires add-O2
ing or removing O2 from the system at many steps. If we
enforce constant entropy, for example, this implies that
the O2 entering or leaving the system is at absolute zero,
since it carries no entropy. The implication is that the
buffering of O2 will implicitly cool or heat the system,
and this is unlikely to correspond to any meaningful
physical situation. Instead we recommend a two-stage
procedure that alternates between (1) steps toward equi-
librium at fixed (S, P) in a closed system and (2) buffer-
ing steps where O2 is added or removed at the current
temperature of the system and the reference entropy is
adjusted accordingly.
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APPENDIX 1. A norm for subsolidus initial guesses to MELTS

A wide range of basalts and peridotites can be successfully assigned to a norm that utilizes two pyroxenes, either olivine or quartz, and at least one
aluminous mineral. The following procedure is customized to produce good initial guesses for peridotites in the system SiO2-TiO2-Al2O36Cr2O3-Fe2O3-
FeO6NiO-MgO6MnO6CoO-CaO-Na2O6K2O, (oxides listed with ‘‘6’’ are optional) using the following phase components (for pyroxene components,
C in the abbreviation indicates clinopyroxene, O indicates orthopyroxene):
olivine: fayalite (Fa) Fe2SiO4 forsterite (Fo) Mg2SiO4

monticellite (Mc) CaMgSiO4 tephroite (Tp) Mn2SiO4
Ni-olivine (NiOl) Ni2SiO4 Co-olivine (CoOl) Co2SiO4

pyroxene: diopside (CDi, ODi) CaMgSi2O6 essenite (CEs, OEs) CaFe31AlSiO6
jadeite (CJd, OJd) NaAlSi2O6 hedenbergite (CHd, OHd) CaFeSi2O6
enstatite (CEn, OEn) Mg2Si2O6 buffoonite (CBf, OBf ) CaMg0.5Ti0.5Fe31SiO6
aluminobuffoonite (CAbf, OAbf ) CaMg0.5Ti0.5AlSiO6

spinel: hercynite (Hc) FeAl2O4 chromite (Cr) FeCr2O4
spinel (Sp) MgAl2O4 magnetite (Mt) Fe3O4
ulvospinel (Uv) Fe2TiO4

garnet: pyrope (Py) Mg3Al2Si3O12 almandine (Alm) Fe3Al2Si3O12
grossular (Gr) Ca3Al2Si3O12

feldspar: albite (Ab) NaAlSi3O8 anorthite (An) CaAl2Si2O8
sanidine (Sd) KAlSi3O8

Procedure (the term ‘‘Assign’’ implies a deduction ; the term ‘‘Set’’ does not):
Rule 0. Convert the analysis in oxides or other system components to molar abundances of oxides in 100 g of system; select from one to three

aluminous phases (garnet, spinel, feldspar) to include; if Cr2O3 is present spinel is mandatory and, if K2O is included, feldspar in mandatory.
Decide whether olivine is likely to be needed; if MnO, NiO, or CoO is present, olivine is mandatory. Quartz will be added if necessary.

Rule 1 (Cr2O3, MnO, NiO, CoO).
Assign all Cr2O3 to Cr. Deduct Cr from FeO.
Assign all MnO to Tp (Tp 5 0.5 * MnO). Deduct Tp from SiO2.
Assign all NiO to NiOl (NiOl 5 0.5 * NiO). Deduct NiOl from SiO2.
Assign all CoO to CoOl (CoOl 5 0.5 * CoO). Deduct CoOl from SiO2.

Rule 2 (Na2O, K2O). If the system contains K2O, feldspar must be included.
Assign all K2O to Sd (Sd 5 2*K2O); deduct 0.5*Sd from Al2O3 and 3*Sd from SiO2.

If feldspar is to be included:
Assign 0.9*Na2O to Ab, leaving remainder for jadeite (Ab 5 1.8*Na2O); deduct 0.5*Ab from Al2O3 and 3*Ab from SiO2.
Assign 0.66*Na2O to CJd (CJd 5 1.32*Na2O); deduct 0.5*CJd from Al2O3 and 2*CJd from SiO2.
Assign remaining Na2O to OJd (OJd 5 2.0*Na2O); deduct 0.5*OJd from Al2O3 and 2*OJd from SiO2.

Rule 3 (TiO2, Fe2O3 in spinel).
If spinel is to be included:
Assign 0.25*TiO2 to Uv; deduct 2*Uv from FeO.
Assign 0.4*Fe2O3 to Mt; deduct Mt from FeO.

Rule 4 (Al2O3).
If spinel is to be included:
Assign 0.5*Al2O3 to Sp; deduct Sp from MgO.
If (Mt 1 Cr 1 2*Uv 2 0.2*Al2O3 . 0) assign 20.2*Al2O3 to Hc (i.e., set Hc 5 20.2*Al2O3, and Al2O3 5 1.2*Al2O3) and add 2Hc to FeO.
else set Hc 5 (0.001 2 Mt 2 Cr 2 2*Uv), add 2Hc to Al2O3 and FeO.

If feldspar is to be included:
Assign 0.64*Al2O3 to An; deduct An from CaO and 2*An from SiO2.

If garnet is to be included:
Set temporary variable TotalGt 5 0.6*Al2O3.
Set Alm 5 TotalGt*[2.0*FeO/(2.0*FeO1 3.0*MgO 1 0.5*CaO)]; deduct 2*Alm from FeO.
Set Py 5 TotalGt*[3.0*MgO/(2.0*FeO1 3.0*MgO 1 0.5*CaO)]; deduct 2*Py from MgO.
Set Gr 5 TotalGt*[0.5*CaO/(2.0*FeO1 3.0*MgO 1 0.5*CaO)]; deduct 2*Gr from CaO.
Deduct TotalGt from Al2O3 and 3.0*TotalGt from SiO2.

Rule 5 (TiO2, Fe2O3, Al2O3). Perform all the following steps before deducting anything from TiO2, Fe2O3, or Al2O3.
Set OAbf 5 0.75*(Al2O3 1 TiO2 2 Fe2O3).
Set CAbf 5 0.25*(Al2O3 1 TiO2 2 Fe2O3).
Set OBf 5 0.75*(Fe2O3 1 TiO2 2 Al2O3).
Set CBf 5 0.25*(Fe2O3 1 TiO2 2 Al2O3).
Set OEs 5 0.75*(Fe2O3 1 Al2O3 2 TiO2).
Set CEs 5 0.25*(Fe2O3 1 Al2O3 2 TiO2).
Deduct (Al2O3 1 TiO2 1 Fe2O3) from CaO and SiO2.
Deduct TiO2 from MgO.
Set TiO2, Fe2O3, and Al2O3 equal to zero.

Rule 6 (CaO). Perform the following steps before modifying CaO:
Set CHd 5 0.15*CaO. Deduct CHd from FeO and 2*CHd from SiO2.
If olivine is to be (provisionally) included, set OHd 5 CaO, else set OHd 5 FeO.
Set ODi 5 21.05*OHd.

Deduct (CHd 1 OHd 1 ODi) from CaO.
Deduct ODi from MgO. Deduct OHd from FeO.
Deduct 2*(OHd 1 ODi) from SiO2.
If olivine is to be (provisionally) included, set CDi 5 0.833*CaO, else set CDi 5 CaO.
Deduct CDi from CaO and MgO. Deduct 2*CDi from SiO2.
If (CaO , 0) the composition is infeasible. End in failure.
If olivine is to be included, assign remaining CaO to Mc and deduct Mc from MgO and SiO2.

Rule 7 (MgO, FeO, SiO2).
If olivine is to be included assign remaining FeO to Fa (Fa 5 0.5*FeO); deduct Fa from SiO2.
If (MgO . SiO2) and olivine is to be included, set Fo 5 (MgO 2 SiO2); deduct Fo from SiO2 and 2*Fo from MgO.
Set OEn 5 0.475*MgO; deduct 2*OEn from MgO and SiO2.
Assign remaining MgO to CEn (CEn 5 0.5*MgO). Deduct 2*CEn from SiO2.
If (SiO2 . 0), a silica excess exists. Add quartz to the assemblage and assign all remaining SiO2 to quartz.
If any oxide is not now equal to zero, the composition is infeasible. End in defeat, or else return successfully.


